Квадратичный метод сопряженных градиентов MatLab

1954
0
0

Урок 16. Численные методы Элементарные средства решения СЛУ
Функции для решения систем линейных уравнений с ограничениями
Решение СЛУ с разреженными матрицами
Точное решение, метод наименьших квадратов и сопряженных градиентов
Двунаправленный метод сопряженных градиентов
Устойчивый двунаправленный метод
Метод сопряженных градиентов
Квадратичный метод сопряженных градиентов
Метод минимизации обобщенной невязки
Квазиминимизация невязки - функция qmr
Вычисление нулей функции одной переменной
Минимизация функции одной переменной
Минимизация функции нескольких переменных
Аппроксимация производных
Аппроксимация Лапласиана
Аппроксимация производных конечными разностями
Вычисление градиента функции
Численное интегрирование
Метод трапеций
Численное интегрирование методом квадратур
Работа с полиномами
Умножение и деление полиномов
Вычисление полиномов
Вычисление производной полинома
Решение полиномиальных матричных уравнений
Разложение на простые дроби
Решение обыкновенных дифференциальных уравнений
Решатели ОДУ
Использование решателей систем ОДУ
Описание системы ОДУ
Дескрипторная поддержка параметров решателя
Пакет Partial Differential Equations Toolbox
Что нового мы узнали?

Квадратичный метод сопряженных градиентов реализуется в системе MATLAB с помощью функции cgs:

cgs(A.B) — возвращает решение X СЛУ А*Х=В. А — квадратная матрица. Функция cgs начинает итерации от начальной оценки, по умолчанию представляющей собой вектор размера п, состоящий из нулей. Итерации производятся либо до сходимости метода, либо до появления ошибки, либо до достижения максимального числа итераций. Сходимость метода достигается, когда относительный остаток norm(B-A*X)/norm(B) меньше или равен погрешности метода (по умолчанию le-6). Функция cgs(...) имеет и ряд других форм записи, аналогичных описанным для функции bieg(...). Пример:

» cgs(A.B)

CGS converged at iteration 4 to a solution

with relative residual 4e-014 

ans =

1.0000

2.0000

3.0000

4.0000

 

Теги MatLab САПР


    Вы должны авторизоваться, чтобы оставлять комментарии.

    При использовании материалов данного сайта прямая и явная ссылка на сайт radiomaster.ru обязательна. 0.1792 s