Вычисление полиномов MatLab

10745
0
0

Урок 16. Численные методы Элементарные средства решения СЛУ
Функции для решения систем линейных уравнений с ограничениями
Решение СЛУ с разреженными матрицами
Точное решение, метод наименьших квадратов и сопряженных градиентов
Двунаправленный метод сопряженных градиентов
Устойчивый двунаправленный метод
Метод сопряженных градиентов
Квадратичный метод сопряженных градиентов
Метод минимизации обобщенной невязки
Квазиминимизация невязки - функция qmr
Вычисление нулей функции одной переменной
Минимизация функции одной переменной
Минимизация функции нескольких переменных
Аппроксимация производных
Аппроксимация Лапласиана
Аппроксимация производных конечными разностями
Вычисление градиента функции
Численное интегрирование
Метод трапеций
Численное интегрирование методом квадратур
Работа с полиномами
Умножение и деление полиномов
Вычисление полиномов
Вычисление производной полинома
Решение полиномиальных матричных уравнений
Разложение на простые дроби
Решение обыкновенных дифференциальных уравнений
Решатели ОДУ
Использование решателей систем ОДУ
Описание системы ОДУ
Дескрипторная поддержка параметров решателя
Пакет Partial Differential Equations Toolbox
Что нового мы узнали?

В этом разделе приведены функции вычисления коэффициентов характеристического полинома, значения полинома в точке и матричного полинома.

poly(A) — для квадратной матрицы А размера пхп возвращает вектор-строку размером n+1, элементы которой являются коэффициентами характеристического полинома det(A-sI), где I — единичная матрица, as — оператор Лапласа. Коэффициенты упорядочены по убыванию степеней. Если вектор состоит из п+1 компонентов, то ему соответствует полином вида c 1 s^n+...+c n s+c n+1 ;

poly (г) — для вектора г возвращает вектор-строку р с элементами, представляющими собой коэффициенты полинома, корнями которого являются элементы вектора г. Функция roots(p) является обратной, ее результаты, умноженные на целое число, дают poly (r ). 

А =

2 3 6

3 8 6

1 7 4 

» d=poly(A) 

d =

1.0000 -14.0000 -1.0000-40.0000 

» А=[3,6.8:12.23.5:11.12.32] 

А =

3 6 8

1223 5

1112 32

 » poly(A) 

ans =

1.0000 -58.0000 681.0000 818.0000

Приведенная ниже функция вычисляет корни (в том числе комплексные) для полинома вида

roots (с) — возвращает вектор-столбец, чьи элементы являются корнями полинома с.

Вектор-строка с содержит коэффициенты полинома, упорядоченные по убыванию степеней. Если с имеет n+1 компонентов, то полином, представленный этим вектором, имеет вид . Пример:

» x=[7.45.12.23];d=roots(x) 

d =

-6.2382

-0.0952+0.7195i

-0.0952 -0.7195i

А=[-6.2382 -0.0952+0.71951 -0.0952 -0.71951]: 

B=Poly (А)

В=[1.0000 6.4286 1.7145 3.2859] 

В*7 

ans =

7.0000 45.000212.001523.0013

С погрешностью округления получили тот же вектор.

polyval (p,x) — возвращает значения полинома р, вычисленные в точках, заданных в массиве х. Полином р — вектор, элементы которого являются коэффициентами полинома в порядке уменьшения степеней, х может быть матрицей или вектором. В любом случае функция polyval вычисляет значения полинома р для каждого элемента х;

[у.delta] = polyval (p. x.S) или [у,delta] = polyval (p.x.S.mu)—использует структуру S, возвращенную функцией polyfit, и данные о среднем значении (mu(l)) и стандартном отклонении (mu(2)) генеральной совокупности для оценки пр-грешности аппроксимации (y+delta).

Пример:

» р=[3,0.4.3]; d=polyval(p,[2,6]) 

d =

35 675

polyvalm(p.X) — вычисляет значения полинома для матрицы. Это эквивалентно подстановке матрицы X в полином р. Полином р — вектор, чьи элементы являются коэффициентами полинома в порядке уменьшения степеней, а X — квадратная матрица.

Пример:

» D=pascal(5)

D =




1 1

1

1

1

1 2

3

4

5

1 3

6

10

15

1 4

10

20

35

1 5

15

35

70

f=poly(d)

f =

1.0000 -99.0000 626.0000 -626.0000 99.0000-1.0000 

» polyvalm(f.D) 

ans =

l.0e-006*

-0.0003 -0.0011-0.0038-0.0059-0.0162

-0.0012 -0.0048-0.0163-0.0253-0.0692

-0.0034 -0.0131 -0.0447 -0.0696 -0.1897

-0.0076 -0.0288-0.0983-0.1529-0.4169 

-0.0145-0.0551-0.1883-0.2929-0.7984

Данный пример иллюстрирует также погрешности численных методов, поскольку точное решение дает нулевую матрицу.

 

Теги MatLab САПР


    Вы должны авторизоваться, чтобы оставлять комментарии.

    При использовании материалов данного сайта прямая и явная ссылка на сайт radiomaster.ru обязательна. 0.1775 s