Апроксимация производных конечными разностями MatLab

5094
0
0

Урок 16. Численные методы Элементарные средства решения СЛУ
Функции для решения систем линейных уравнений с ограничениями
Решение СЛУ с разреженными матрицами
Точное решение, метод наименьших квадратов и сопряженных градиентов
Двунаправленный метод сопряженных градиентов
Устойчивый двунаправленный метод
Метод сопряженных градиентов
Квадратичный метод сопряженных градиентов
Метод минимизации обобщенной невязки
Квазиминимизация невязки - функция qmr
Вычисление нулей функции одной переменной
Минимизация функции одной переменной
Минимизация функции нескольких переменных
Аппроксимация производных
Аппроксимация Лапласиана
Аппроксимация производных конечными разностями
Вычисление градиента функции
Численное интегрирование
Метод трапеций
Численное интегрирование методом квадратур
Работа с полиномами
Умножение и деление полиномов
Вычисление полиномов
Вычисление производной полинома
Решение полиномиальных матричных уравнений
Разложение на простые дроби
Решение обыкновенных дифференциальных уравнений
Решатели ОДУ
Использование решателей систем ОДУ
Описание системы ОДУ
Дескрипторная поддержка параметров решателя
Пакет Partial Differential Equations Toolbox
Что нового мы узнали?

diff(X) — возвращает конечные разности смежных элементов массива X. Если X — вектор, то diff(X) возвращает вектор разностей соседних элементов [Х(2)-Х(1) Х(3)-Х(2) ... X(n)-X(n-D], у которого количество элементов на единицу меньше, чем у исходного вектора X. Если X — матрица, то diff(X) возвращает матрицу разностей столбцов: [X(2:m, :)-X(l:m-l. :)];

Y = diff(X.n.dim) — возвращает конечные разности для матрицы X по строкам или по столбцам в зависимости от значения параметра dim. Если порядок п равен величине dim или превышает ее, то diff возвращает пустой массив.

Используя функцию diff, можно строить графики производных заданной функции. Пример этого показан ниже:

» Х=0:0.05:10; 

» S=sin(X); 

» D=diff(S): 

» plot(D/0.05)

Для получения приближенных численных значений производной от функции sin(.r) вектор конечно-разностных значений D поделен на шаг точек по х. Как и следовало ожидать, полученный график очень близок к графику функции косинуса (рис. 16.2). Обратите внимание, что по оси х отложены номера элемента* вектора X, а не истинные значения х.

Пакет расширения Symbolic Math Toolbox позволяет выполнять дифференциро вание функций в аналитическом виде, т. е. точно. Это, однако, не всегда нужно

Рис. 16.2. Приближенный график производной от функции sin(x)

 

Теги MatLab САПР


    Вы должны авторизоваться, чтобы оставлять комментарии.

    При использовании материалов данного сайта прямая и явная ссылка на сайт radiomaster.ru обязательна. 0.1943 s